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S U M M A R Y  
The properties of permanent waves on a running stream of viscous fluid flowing down an inclined plane are investigated 
for small Reynolds number. The waves considered have a long wavelength compared with the depth of liquid. The 
approximation for the free surface in this Stokes flow problem is taken to the "third order" and extends work initiated 
by Mei [1]. This extension introduces additional permanent waves including cnoidal and solitary waves and also 
transverse strips of liquid running down the plane which appear as liquid drops in section. A qualitative analysis of the 
differential equation is obtained using phase-plane techniques. 

1. Introduction 

The steady shear flow of a viscous fluid of constant depth down an inclined plane is one of the 
simplest examples of steady free surface flow with the gravitational forces balancing the viscous 
stress. This paper presents a further study of the type and behaviour of permanent waves 
moving down the free surface. We shall restrict the analysis to two-dimensional disturbances. 

Y 

Figure 1. The coordinate scheme. 

Let the plane be inclined at an angle 0 to the horizontal with x- and y-axes as shown in figure 1. 
The Navier-Stokes equation for the flow can be expressed as 

Ov 
p ~ + pv-grad v = -g rad  p + p g i  sin O - p g j  cos O+pvV2v,  (1) 

where v = (u, v) is the velocity, p the pressure, t the time, p the density, v the kinematic viscosity 
and g the gravitational constant. In this equation we neglect the inertia terms on the left-hand 
side compared with those on the right which include the pressure gradient, the gravitational 
force and the viscous terms. It is further assumed that disturbances take the form of long waves 
and, in consequence, that we can neglect x-derivatives compared with y-derivatives in the 
viscous terms for u and neglect entirely the viscous terms for v. In component form the momen- 
tum equations become 

px = pg~ + p v u ,  , (2) 

p, = -pg , (3) 
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where ~ = sin 0 and fl = cos 0. In addition u and v must satisfy the continuity equation 

u~+ v, = 0. (4) 

Equations (2)-(4) contain the same approximation as that used by the author [2] for steady 
flow down an incline with an undulating bed. 

The boundary conditions for continuity of velocity on the incline and for a stress-free surface 
y=h(x,  t) become 

u = v = 0  on y = 0 ,  (5) 

( p -  2pvu~)h~ + pv(uy + v~) = O0 } 
p-2pvvy+pv(uy+v~)h~ = on y =  h, (6) 

with surface tension not included. Finally h(x, t) must satisfy the kinematic surface condition 

h~+uh~-v= 0 on y =  h. (7) 

We propose to develop an approximate solution of the system (2)-(7) which extends the 
work of Mei [1] to a higher order for the differential equation for the free surface elevation. 
Mei gives a very detailed and useful analysis of the approximation and the range of its validity 
in terms of the relative smallness of three parameters associated with the flow--the Reynolds, 
Froude and Strouhal numbers. All these parameters are small compared with unity but of 
comparable order to one another. Solutions are obtained by an iterative perturbation technique 
using expansions of the stream functions and pressure in power series in y with coefficients 
depending on x and t. We shall confirm that system (2)-(7) leads to the same result and also 
show that the next term of higher order can be readily included. 

Equations (2) and (3) effectively treat the fluid as a boundary-layer with the pressure hydro- 
static through the liquid. Benjamin [3] suggests that the inertial character of any disturbance 
to the steady flow will depend on the Reynolds number R = Ply, where P is the rate of volume 
flow per unit span of the stream. The steady flow of fluid of constant depth ho has a velocity 
distribution 

u = gy (2ho- Y) a/(2v) 

whence 

P =  2hou(ho)/3 and R =  ghga/(3v2). 

We are considering the situation in which R is small. 
It should be emphasised again that the Stokes' flow problems apply only to liquids with 

relatively high viscosity such as certain oils or possibly to substances being processed in a 
molten state such as glass. 

2. Formulation of the Surface Equation 

From equations (2)-(5) it is easy to establish that 

p = p g ( q - y p ) ,  

u = oy {y ( q x -  + 

v = - gy2 {yq~+ 3rx}/6v, 

(s) 
(9) 

(lO) 
where q(x, t) and r(x, t) are two functions to be determined by the free surface conditions (6). 
Thus the two linear differential equations for q and r are 

(q-hf l -h2qxx-Zhrx)hx+hqx-ho~+r-~h3qxx~-�89 = 0, (11) 

and 
q - hfl + h 2 q~x + 2hr~ + (hqx- hc~ + ~ 3 1 2 r--ah q ~ - ~ h  r ~ ) h , =  O. (12) 
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It seems that these equations cannot be solved explicitly for q and r, and the following perturba- 
tion procedure is proposed to derive an approximate solution. Let 

q= ~ q~" r= ~ r ~") 
n ~  l t z~  l 

where q(") and r (") are of degree n in h and its derivatives. The substitution of these expansions 
into (11) and (12) and the equating of terms of the same degree lead to the following iterations, 
to the first degree 

- h e + r O ) = 0 ,  q(1)-hfi=O ; 

to the second degree 

q(1)h~ - hh~ fl + hq~) + r (2) = O,  

q(2) -k- 2r~ ) h - hh~ e + r (1) h~ = 0 ; 

to the third degree 

q(Z) h x -  2hhxr~) + hq~) + r(3) • h 2 =0  
- - 2  x x  

q(3) + h a q ~  + 2r(2) h + hh~ q~l) + hx r ~2) = 0 ,  

etc. These equations can be solved to give 

q~a)= hfl, q(2)= -2hh~e ,  q(a)= h(hhx+ 2hZ)fl , 

r (1) = ha,  r = -hh~f i ,  r (3~ = 2h(hh~+3h2)e. 

Approximations for u and v on the free surface can now be found and inserted into the kine- 
matical surface condition. If terms up to and including the fifth degree in h and its derivatives 
are accounted for the surface equation becomes 

vht + gh 2 h~ e -  ~ (h 3 hx)~ fig + (8 h 2 h~ + 8h 3 h~ h~  + 2h4 h ~ )  eg = O. (l 3) 

If the third and fourth terms in (13) are neglected, the first order equation, 

vht + ghZ hxa = O, 

is that governing kinematic waves which has been fully studied by Lighthill and Whitham [4]. 
The equation with just the fourth term neglected was first obtained by Mei [ 1]. Takaki [5] has 
also derived first and second order perturbations to uniform shear flow down a vertical plate ; 
he also includes surface tension. The case e =  1 occurs also in an exercise by Batchelor [1l] ,  
p. 263. The generalisation to a non-uniform bed and to three-dimensions has been carried 
through by S. H. Smith [6]. The case e =  0 has also been considered by S. H. Smith [7] and 
similarity solutions have been obtained for certain initial-value problems involving the spread 
of liquid over a horizontal plane. 

The full equation (13) is obviously non-linear and exhibits damping and dispersion through 
the second and third order derivatives of h, the latter appearing in the new term of highest 
degree. 

3. Permanent waves 

It is convenient at this point to express (13) in dimensionless form. Let ho represent a typical 
depth and Xo a typical wavelength of the disturbance. Let to = VXo/gh 2 be the representative 
time. The transformation 

h = ho H ,  X = XoX , t = to T 

changes (13) into 

Hr + eH 2 H x -  �89 (H 3 Hx)x + ee 2 (8H~ + 8 HH x Hxx + {H  2 Hxxx) H 2 = 0 ,  (14) 

where ~ = ho/xo. 
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We now look for bounded solutions of the form H(X, T)= Q(X-CT) where C is the di- 
mensionless wave speed. Thus permanent wave solutions must satisfy 

gl,~ • 2/"12/'11"] 1"32 C'q' a ~ 2 t l ' • 1 7 6  ~, ~ ~ I ~  0 

This equation can be integrated once to give 

3CQ- aQ a + fleQ a O'- 2ae 2 Qa (4Q,2 + QQ,,) = A, (15) 

where A is a consta~nt. 
The constant A can be interpreted as follows. The actual wave speed is Cgh~/v and equation 

(15) can be obtained directly by noting that the relative rate of volume flow per unit span must 
be constant; that is 

fho(U C@Z~ Cgh~vA (16) 

which, when evaluated to the same approximation, supplies equation (15) again. We can 
assign a value to A by assuming that u is given by the shear flow of depth h0 moving down an 
inclined plane, that is 

u = 9yc~(2ho-y)/2v. 
Equation (16) then gives A = 3 C - a .  

With the exception of one important case which will be discussed later, it seems that equation 
(15) cannot be integrated again in terms of standard functions. A qualitative picture of the main 
features of the solutions can be obtained by taking a phase plane view of (15). The singular 
points (Q'= Q" =0)  must satisfy the cubic equation 

c~Q3-3CQ+3C-e = 0 ,  (17) 

which, as we might expect from the definition of A, has one solution Q = 1. Obviously only 
nonnegative roots are of physical interest, and it is assumed that 0 < c~ < 1. The other two roots 
are given by 

Q = � 8 9  1 + x / { ( 1 2 C -  3~)/a} ] .  

There is just one positive root of (t7) if C <  �89 and two nonnegative roots if C >�89 
The singular points can be classified by adopting the linearising procedure given by Kaplan 

[8], p. 146. Suppose Q = Qo is a singular point. In the vicinity of this point the phase paths are 
given by 

d '  
Q = QoQ 2ae2~ot~ ~ -  3 ( C -  2 e 3 ,.  

The classification of the singular point depends on the sign of the discriminant 

A = 12 Q~ {fi2 + 24a(C - aQo2)}. 

o f  the major cases, the singular point is a node if A > 0 and C < aQo 2, a saddle-point if C > eQo 2 
and a focus if A < 0 and C < aQ2. 

When Qo = 1, the singular point is a saddle-point if C > e, a node if a { 1 - (fi2/2412) } < C < 
and a focus if C <  ~{1--(fl2/24~2)}. The second root 

Qo = Qx = � 8 9  1 + x/{(12C - 3~)/~} 

is positive for e > �89 Now this positive root is a saddle-point if�89 < C < c~, a node if ~ < C < ~a x 
{2~ + 5 + ~/(127 + 9)} and a focus if C > -~e (2~ + 5 + x/(127 + 9) } where 7 = f12/12a2- Thus, with 
the exception of the critical cases the phase plane for Q > 0  and C >�89 contains one saddle- 
point and a node or focus. For C < �89 the phase plane in Q > 0 contains either a node or a focus, 
but the singularity must be a focus if 7 < -~- 

Some typical phase diagrams are shown in figure 2. These were sketched with the help of the 
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special case considered in the next section and the Poincar6 perturbation technique for small 
fl given by Minorsky [9], p. 246, which imply that the spirals are unbounded and that the phase 
plane does not contain limit-cycles. 

(1 

(a) 

Q' 

QI 

0 

(b) 

Figure 2. Phase diagrams in the four principal cases (not to scale). 

The phase diagrams in figures 2(a) and 2(b) seem to be physically unrealizable ; for example, 
in 2(a) the spiral is unbounded and so corresponds to a wave on the free surface of progressively 
steepening slope. In both 2(a) and 2(b), C < �89 As Mei [1] shows the speed �89 is that of a liquid 
advancing down a dry bed. Whilst there is strong circumstantial evidence for imposing the 
requirement C > �89 the theory is not entirely convincing on this point. 

Figures 2(c) and 2(d) resemble similar diagrams given by Mei [1] for small amplitude waves, 
but without now the restriction to small amplitude. Some possible permanent waves are 

(a) (b) 

(c) (a) 
Figure 3. Some typical permanent waves. 

sketched in figure 3. The inclusion of higher degree terms in equation (14) greatly extends the 
types of permanent waves which are possible. If the term containing ez in (14) is ignored only 
monoclinal waves (as shown in figure 3(a)) are derived from the remainder of the equation. 
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4. Waves on a Liquid Flowing Down a Vertical Plane 

For the vertical wall (e= 1 and fl=0), the "damping" term disappears from equation (15) 
leaving 

3CQ-Q3-SeaQ3Q'Z-2eZQ4Q"= 3 C -  1 , 

which can be integrated once to give 

e2 Qs Q,2 = �89189 1)Q 5 + B  (18) 

where B is the integration constant. The singularities occupy the same positions as before with 
the saddle-point remaining a saddle-point but the focus being replaced by a centre. Equation 
(18) is transformed by the substitution 

X - C T  = ~(8C) ~ , Q ( X - C T )  = C}P(~) 

p t 

4 

3 

2 

I D = -I/ ~ ~  

0 P 

Figure I Phase diagram for flow down a vertical plane with one singular point. 

V \ 

1 P 

0 2 

:! 
Figttre 5. Phase diagrams for flow down a vertical plane with two singular points. 
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into the more convenient form 

p8 p,2 = 4p6 _ pS _ kp5 + D 

where k=8 (3C-1 ) /5C  ~ and D=8B/C 4. Phase diagrams are shown in figures 4 and 5 in the 
two cases k = - 1 and k-- 1 respectively, corresponding to one and two singular points. 

In both cases closed paths represent cnoidal waves with amplitudes which can be read off 
the phase diagrams. The limiting case of the cnoidal wave of increasing wavelength is the solitary 
wave and in figure 5 it is the image of the closed separatrix which starts and ends at the saddle- 
point. It should be emphasised that in this context the cnoidal and solitary waves are waves on 
running streams. Phase paths along which Q'-~ +_ oo as Q ~ 0  correspond to a section of a liquid 
strip running down the vertical plane. 

That the damping characteristics disappear for the vertical plane must have some implica- 
tions for the stability of this situation since for small inclinations to the vertical the centre is 
perturbed into an unstable spiral in both instances. 

Equation (18) can be integrated again if, for example, C=�89 and B=0,  in which case 

( X -  CT) z = 8e 2 (4C-  QZ) (19) 

ignoring the constant of integration which only gives a translation of X - C T .  The elliptic 
section given by (19) is the shape of the free surface of a strip of liquid running down the plane. 

Some experimental work on syrup flows down inclined planes has been recently reported by 
Taylor [10] and he has compared these results with the shallow flow approximation given 
previously by S. H. Smith [6] and P. Smith [2]. Reasonable agreement is found between the 
theory and experiment in his case which lends some justification to the extended approximation 
presented in this paper. 
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